Thursday, 25 June 2015

How Michelin Develops a Stream of Trained Automation Employees

Randy Crutfield of Michelin North America explains how Michelin’s workforce development programs and close collaboration with local community colleges helps ensure the company has a steady of stream of well-qualified workers.



Amid years of discussion about a manufacturing skills gap—or lack thereof—and what factors may or may not have created it, many companies instead focused on taking action to address their workforce needs now and in the future. One of those companies is Michelin.
Randy Crutfield, site hiring manager for Michelin North America’s Lexington, S.C. site (the largest site for Groupe Michelin and the largest manufacturing employer in South Carolina), explained to attendees of The Automation Conference 2015 how the company operates its workforce outreach program, which is designed to ensure the company has little problem maintaining the knowledgeable workforce it needs.
Key factors in this program are:
  • Michelin Technical Scholars Program—through which select students can develop hands-on work experience while earning their degree in Electronic Engineering Technology or Mechatronics at a local technical college. Michelin Technical Scholars receive scholarships to cover the cost of tuition, fees and books for the program along with competitive pay and part-time work and benefits;
  • Internal policies and procedures for finding the right candidates—which includes specific tests for math, mechanical aptitude, and electrical and mechanical technology skills;
  • Area school visits and outreach to kids as early as 9th grade;
  • A formal pipeline assessment process; and
  • Partnerships with local technical colleges that includes curriculum alignment.
Joining Crutfield in his presentation were Cheryl Garrison and Accounties Lashan Smith from TriCounty Technical College to explain how they work with Michelin in curriculum development and promotion of Michelin’s program to the school’s student body.
Source:-http://www.automationworld.com/workforce-development/how-michelin-develops-stream-trained-automation-employees

Monday, 22 June 2015

5 HMI Technology Trends

As interest in mobile access to manufacturing equipment increases for both asset management and production insight, there has been a corresponding uptick in HMI technology to facilitate this interaction.



Whether its part of a process to pave the way for an Industrial Internet of Things initiative or simply to provide more accessible insight into operational capabilities, the role of the human machine interface (HMI) has clearly moved front and center for many companies. In reaction to increasing manufacturer interest for more versatile HMI capabilities, HMI technology suppliers are actively bridging the gaps in HMI technology that long kept it affixed to the machine(s) it monitored.
To gather some insight into some of the key advances that have been changing HMI technology over the past few years, I spoke with Jeff Thornton, product manager at Red Lion Controls. He pointed to five key facets of HMI technology that are changing the common perceptions of HMI. Granted, the technologies that Thornton discussed with me are specific to Red Lion Controls’ products, but they provide important insights into the direction HMI technology is headed.
The first thing Thornton pointed out in our discussion of modern HMI technology was protocol conversion. According to Thornton, Red Lion’s Graphite HMIs, for example, can be setup as “the gateway to exchange data between all connected devices. Graphite HMIs can convert between 13 protocols simultaneously from a list of more than 300 drivers to integrate disparate devices like PLCs, drives, barcode readers and panel meters. “
The ability to manage these complex multi-vendor environments via programming software is the second technology advance Thornton highlighted. “Red Lion realized customers were spending too much time setting up HMIs, so we designed plug-in modules for our Graphite HMIs,” he said. “These modules minimize development and commissioning time over traditional systems that use an HMI paired with separate I/O, PLCs, and other controllers.”
Development of modules to ease the system integration programming process is an increasing trend throughout industry. For more information about this trend, see the article on machine design building blocks I posted a few months ago.
Thornton highlighted that fact that PID control is included in the Graphite plug-in modules. This ability can “eliminate hours of custom PLC protocol development associated with standalone controllers. Operators can use Graphite PID modules to configure multi-zone systems, such as plastic extrusion heating, and integrate everything in minutes,” he said.
With the ability to now take your HMI practically anywhere with you, how the device collects, processes, and presents data continuously for proactive monitoring and control becomes ever more important.

The Crimson programming software used to customize Graphite HMIs permits configuration of communication protocols (such as the 300 device drivers referenced earlier in the protocol discussion), definition of data tags, and creation of user interfaces. The software also has a built-in emulator for testing, data logging and web serving; and access to features such as read/write to the SD card and serial port management, Thornton said.
Web serving and data logging are two big trends in the HMI space—and the third major HMI technology advance noted by Thornton. He said that Graphite HMIs are “the only rugged HMI that web-enables any device for remote operation across a LAN or the Internet. Users can remotely monitor and control applications via PCs, tablets or smartphones to streamline operations. When problems occur, SMS text messages and email alerts can be automatically sent to maintenance teams for proactive problem resolution.”
When asked about the security concerns surrounding remote access to industrial systems, Thornton pointed out that remote access to Graphite can be setup as disabled (no access), view-only, or full control of the HMI. “Based on who is logging into the HMI, the software can dictate what level of permissions will be granted,” he said. The proprietary operating system used to run Graphite HMIs are a factor that Thornton said protects Graphite HMIs from many of the security threats affecting HMIs using a more common OS.
The ruggedness of Graphite HMIs is the fourth HMI advance Thornton noted about modern HMI technologies. “For some industries, like oil and gas, alternative energy and water/wastewater, an HMI needs to stand up to harsh conditions. It used to be tough to take an HMI out into oil fields or have it withstand very hot or cold temperatures. But with the use of cast-aluminum metal housing, such as on the Graphite HMIs, these devices can now withstand shock and vibrations and extreme temperatures between -20° to 60°C.”
With the ability to now take your HMI practically anywhere with you, how the device collects, processes, and presents data continuously for proactive monitoring and control becomes ever more important—and the fifth modern HMI technology pointed out by Thornton. “The ability collect, store, and display data for real-time analysis provides valuable insights into processes that enable operators to analyze output levels, detect valve issues, or identify temperature extremes,” he said. “By logging real-time performance data, including productivity and output comparisons, organizations can easily implement process improvements or quickly pinpoint and address bottlenecks or chokepoints.”

Source:-http://www.automationworld.com/5-hmi-technology-trends